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Abstract 
 

 The outcome of SARS-CoV-2 infection may differ depending on factors, especially age. The elderly 
population is more likely to have a severe condition than the younger population. However, several young 
people suffer from severe lung diseases, leading to multiple organ failure and death caused by dysregulation 
of cytokine release, known as a "cytokine storm." The cytokine storm was first reported in 1993 in graft 
versus host disease and many tissue transplantation cases, but the mechanism and specific treatment have 
not yet been discovered. The transcriptomic analysis of RNA expression data from both lung and blood 
samples of COVID-19 patients was conducted to gain insight into the potential mechanism of cytokine storm 
in COVID-19. The data were obtained from the Gene Expression Omnibus database. The RNA reads were 
processed, aligned to the GRCh38 genome reference, and normalized after batch correction. Differential 
gene expression analysis was utilized to identify the potential contributors to the cytokine storm. Following 
this, the gene list was used for the co-expression network analysis and immune cell fraction analysis to 
identify a potential drug target for COVID-19. The analysis identified five genes, including IGLV5-35, C8B, 
INHBC, TNFSF11, and AMHR2, as potential contributors to the cytokine storm. Among them, AMHR2 exhibits 
the highest fold change compared to the other genes and plays a role in the immune system-related 
pathway indicating that AMHR2 is a prospective drug target. AMHR2 dysregulation might disrupt the 
equilibrium of the TGF beta signaling pathway, causing pro-inflammatory macrophage activation and 
enhanced cytokine release. The systemic effect will lead to a cytokine storm. Therefore, modulating TGF 
beta signaling via AMHR2 can potentially inhibit the cytokine storm in COVID-19 patients.  
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Introduction 
The SARS-CoV-2 virus outbreak in 2019 caused a global pandemic with a profound impact, leading 

to millions of deaths worldwide (World Health Organization, 2023).In the case of COVID-19, several factors, 
including sex and age, significantly influence disease severity (Takahashi et al., 2020; Farshbafnadi et al., 
2021; Ahmad, 2020). Senior population individuals tend to experience more severe disease outcomes and 
higher mortality compared to the younger population (Ahmad, 2020; Farshbafnadi et al., 2021). The senior 
population has potentially had higher disease severity than the younger population due to dysregulation 
in immune aging. The dysregulation shifts the immune cell responses toward inflammatory states, up-
regulates inflammatory gene expression, impairing the adaptive immune system's ability to limit infections 
and inflammation (Farshbafnadi et al., 2021). However, in some cases, several young people suffer from 
severe lung diseases indicated by hyperinflammation and low oxygen saturation (Metha et al., 2020; Cao 
2020). The condition is triggered by the dysregulation of cytokine, known as a "cytokine storm" (Guo et al., 
2021; Rowaiye et al., 2021).  

Cytokine storm is a condition that occurs when the immune system fails to eliminate a viral 
infection and subsequently promotes inflammation along with the elevation of the number of cytokines 
released in the blood (Guo et al., 2021; Schultze & Aschenbrenner, 2021). Besides SARS-CoV-2 infection, 
several viruses infections including, H1N1, Mers-CoV, and SARS-CoV, can trigger cytokine storms. However, 
SARS-CoV-2 induces a more complex immune response compared to other infections. SARS-CoV-2 infection 

triggers the production of both pro-inflammatory cytokines, including TNF-α, and IL-6, and anti-
inflammatory cytokines, including IL-4, and IL-10. This leads to more widespread immune dysregulation. On 
the other hand, SARS-CoV's Th1-dominated response with lower IL-10 levels and MERS-CoV's higher IL-6 

and IL-1β levels with less regulatory T cell involvement, as well as from influenza’s Th1 cytokine profile, 
where SARS-CoV-2 exhibits a more diverse Th1/Th2/Th17 immune activation (Pacheco-Hernández et al., 
2022; Liu et al., 2021).   

The complex immune response within cytokine storm caused by SARS-COV-2 infection triggers 
severe conditions in COVID-19 patients, with the most common symptoms being hypoxemic and respiratory 
failure, leading the patient to be admitted to the ICU (Hariyanto et al., 2021). Identifying potential drug 
targets is essential to overcoming cytokine storms in COVID-19 patients and enhancing their survivability. 
Furthermore, the underlying cytokine storm mechanism still needs to be determined, whether it is the 
direct effects of the virus or the synergistic effects of both (Meftahi et al., 2020; Wang et al., 2020). Besides 
causing lung damage, cytokine storm also influences the cytokine level in the blood, which triggers systemic 
effects, including leucocyte overactivation and recruitment to the infected site that leads to an excessive 
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pro-inflammatory mediated response (Agüero et al., 2021). Thus, the gene expression analysis should be 
conducted within the blood and lungs as the systemic effect not only dysregulates cytokine activity in the 
lungs but also in the blood. 

The development of transcriptomics analysis has a potency to reveal the molecular mechanisms 
underlying complex diseases (Paananen & Fortino, 2019). The transcriptomic analysis was used to identify 
potential targets for Alzheimer's disease by identifying differentially expressed genes in Alzheimer's disease 
and normal brain samples (Patel et al., 2019). Furthermore, correlation networks are frequently used to 
examine gene expression data and collect biologically important data from genes with comparable co-
expression patterns. Co-expression analysis has successfully identified drug targets for several infectious 
diseases, including influenza, tuberculosis, and hepatitis (Hasankhani et al., 2021). This study attempts to 
identify the potential drug target for COVID-19 patients with cytokine storm through transcriptomic data 
analysis and network-based analysis. The patient's gene expression data and clinical conditions were 
collected from the public database and the original publication. Differential gene expression, differential 
expression at the pathway level, gene co-expression network analysis, and immune cell fraction analysis 
were used to identify a potential drug target for COVID-19 cytokine storm patients. Potential targets should 
be upregulated in the lung and blood, which are part of immune-related pathways, and they should be of 
regulatory importance in network analysis. 
 
Purpose 

 The research aims to investigate the potential drug targets for Covid 19 patients with cytokines 
storm according to gene expression in the lung and blood using differential expression analysis and gene 
co-expression network analysis. 
 

Research Methodology 
Data Preparation 
Lung and blood Transcriptomic data from COVID-19 patients were collected from the GEO database 

with identifiers GSE150316, GSE134692, and GSE183533 for lung, GSE155454, and GSE166424 for blood. 
These datasets included samples from both young and senior populations, with ages ranging from 15 to 77 
years, and included both men and women (Desai et al., 2020; Sivakumar et al., 2019; Budhraja et al., 2022; 
Chan et al., 2021). The data were assigned to normal, non-trigger, and trigger cytokine storms. The normal 
group comprised samples that did not have an infection of SARS-CoV-2. On the other hand, the COVID-19 
sample that tested positive and had one or more clinical conditions such as pneumonia, edema, dyspnea, 
hypoxemia, and ARDS, was categorized as part of the cytokine storm trigger group since these conditions 
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are developed by a cytokine storm (Fajgenbaum & June, 2020). The non-trigger group consists of positive 
COVID-19 samples that do not exhibit any of these clinical criteria. 

Blood and lung data were prepared separately during the preparation process. First, the gene with 
a count lower than ten counts per million (CPM) was filtered out (Lun et al., 2016). Afterward, the data 
were normalized using the trimmed mean of the M-values method by Robinson and Oshlack (2010). The 
Gene co-expression network analysis data set was prepared by normalizing the filtered-out data using reads 
per kilobase per million (RPKM) by EdgeR function. Data preprocessing was done to ensure the data quality 
for further analysis. 

 
Differential Expression (DE) Gene Analysis 
The DE analysis can be employed to investigate genes associated with the disease's condition. The 

analysis compared the gene expression from the cytokine trigger group sample to the non-trigger cytokine 
storm and normal groups. The analysis was conducted using the edgeR robust method in the R-based 
package: edgeR to prevent the interference of the outlier data in the case of the high level of expressed 
count dispersion (Robinson et al., 2009; Zhou et al., 2014; Raithel et al., 2016). The results with P-value < 
0.01, False Discovery Rate (FDR) < 0.05, and the absolute value of Log Fold Change (LFC) > 1 were 
considered as differentially expressed genes (Sadanandam et al., 2020). 

 
Differential Expression Analysis at Pathway-Level  
The differential expression analysis at the pathway level was conducted to gain more insight into 

the relationship between differentially expressed genes and biological activity. Firstly, the gene set 
containing a list of genes, and their associated pathway was obtained from the Reactome and the KEGG 
database (Kanehisa & Goto, 2000; Kanehisa, 2019; Kanehisa et al., 2022; Gillespie et al., 2021; Jassal et al., 
2019). Then, the gene set enrichment score calculation was done using the R-based package: GSVA using 
normalized CPM (Hänzelmann et al., 2013). The hypothesis was that there are no significantly different 
enriched pathways in cytokine trigger samples compared to negative and non-trigger samples. R-based 
package limma was used to conduct the analysis. The results with P-value < 0.05, FDR < 0.05, and an 
absolute value of LFC > 0 were chosen as significantly different enriched pathways limma (Smyth, 2004). 

 
Cell Fraction Analysis 
Cell fraction analysis provides information on the relative distribution of 22 immune cell types and 

subtypes within samples. The samples' relative percentage of immune cell fraction was identified using 
Cibersortx. Cibersortx identifies the cell abundance by comparing the normalized CPM value of genes from 
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the data set to the single-cell gene signature matrix (Newman et al., 2019). Analysis using Cibersortx was 
conducted on the website interface (CIBERSORTx, n.d.) using the LM22 signature matrix and batch correction 
removal running parameters. Since the number of samples in each group is unequal, the mean comparison 
of relative fractions from several immunological subtypes is compared using Welch's t-test (Zhenqiu & Ke-
Hai, 2010). 

 
Gene Co-expression Network Analysis 
A gene co-expression network is utilized to identify the crucial genes in a specific biological system 

under certain conditions. The network construction began by computing the correlation coefficient between 
genes within the gene set using the RPKM normalized data of the samples. Each gene is represented by a 
node, while the co-expressed genes are connected by edges. Prior to network construction, C2 curated 
gene sets were imported as a gene set reference using the GSVAdata library on R studio. Afterward, the 
prepared data sets from the primary data set preparation were imported to the R studio. The gene co-
expression network was calculated using Gene Set Net Correlation Analysis (GSNCA) by "GSNCAtest" and 
"plotMST2.pathway function ()". GSNCA introduced weight to each gene according to its cross-correlation 
with other genes. The essential gene in the network tends to have a high weight (Rahmatallah et al., 2013; 
Liu et al., 2019).  The top 10 highly connected genes are considered the hub genes.  

 
Results 
 

Data Preparation 
The gene count of RNA expression in lung tissue was retrieved from the GEO database, accession 

numbers GSE150316, GSE134692, and GSE183533, whereas the data for blood was obtained from 
GSE155454 and GSE166424. Based on the clinical condition of the samples, 80 lung samples and 96 blood 
samples are eligible to be assigned to the groups. Table 1 of the supplementary materials presents the 
subject information. After batch correction, the data showed a more dispersed distribution instead of being 
clustered according to its batch. Supplementary Figure 1 visualizes the result of batch correction. 
 

Differential Gene Expression analysis 
The differentially expressed (DE) genes analysis approach is used with the prepared data set to 

identify the significantly changed genes for the cytokine storm condition in Covid 19 patients. Out of 25,541 
genes in lung samples, 2188 genes were detected as upregulated genes, and 493 genes were 
downregulated, as shown in Figure 1A. In addition, the blood DE analysis reveals that 3,337 genes are 
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upregulated, while 523 genes are downregulated. The DE genes from the lung and blood are compared to 
find the upregulated genes in both tissues. As shown in Figure 1 C, there are 290 intersection genes between 
the lung and blood. Gene set from the KEGG dan Reactome database was utilized to observe the biological 
relevance of the 290 upregulated genes. According to the KEGG and Reactome database, the 290 
intersection genes are involved in 62 known biological pathways with at least two genes as members of 
the pathway gene set (Kanehisa & Goto, 2000; Kanehisa, 2019; Kanehisa et al., 2022; Gillespie et al., 2021; 
Jassal et al., 2019). 
 

The intersection of genes associated with immune system signaling and cytokine signaling was 
observed to narrow down the gene candidates, as immune system signaling and cytokine signaling 
dysregulation might trigger the cytokine storm (Guo et al., 2021; Yang et al., 2021). According to the 
Reactome immune system signaling gene set, intersection genes associated with the immune system 
signaling are IGLV5-35 and C8B. On the other hand, The KEGG cytokine-cytokine receptor signaling pathway 
reveals that INHBC, TNFSF11, and AMHR2 are associated with cytokine signaling activity. In addition, the log-
fold change (logFC) of AMHR2 is consistently high compared to the other four genes. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

การประชุมเสนอผลงานวิจัยระดับชาติ มหาวิทยาลัยสุโขทัยธรรมาธิราช ครั้งที่ 14  
The 14th STOU National Research Conference 

 

 

574 

 
 

(A)  (B) 

 
                                                                  (C) 

 
Figure 1A. Visualization of lung DE result, 1B. Visualization of blood DE. DE genes that exceeded -1 and 1 
log fold change thresholds are displayed in red, while those that did not are shown in blue. Non-DE genes 
with a p-value above 0.01 are below the black dashed line. Figure 1C illustrates the number of 
upregulated genes in the lung, blood, and intersection genes. There are 290 genes upregulated in lung 
and blood samples, whereas 1,898 genes are only upregulated in the lungs, and 2,524 genes are only 
upregulated in the blood. 
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Differential Pathway Expression Analysis 
 
Differential pathway expression analysis compares gene sets to identify a highly active pathway in cytokine 
storm trigger samples. The investigation included 604 pathways, for which information was acquired from 
the databases of the KEGG and Reactome gene sets (Kanehisa & Goto, 2000; Kanehisa, 2019; Kanehisa et 
al., 2022; Gillespie et al., 2021; Jassal et al., 2019). There are 469 and 54 significantly upregulated pathways 
at 0.05 significant levels in lung and blood, respectively. As focusing on the immune-related pathways, the 
KEGG TGF beta signaling pathway, Reactome signaling in the immune system, and Reactome innate 
immunity signaling are significantly upregulated in cytokine storm lung samples, while only the Reactome 
complement cascade is significantly upregulated in cytokine storm blood samples, as illustrated in Figure 
2A and B. Furthermore, no upregulated pathway in the lung has been identified as an upregulated pathway 
in the blood. 
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                                         (A)                                                                         (B) 
Figure 2. Volcano plot of differential pathway expression analysis: A.Lung, B.Blood. The red dot reflects 
significantly different expression pathways, while the green dots represent non-significant pathways. The 
red dots with a Log2 fold change greater than zero show enhanced expression in cytokine trigger samples 
compared to negative and non-trigger data. 
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Table 1. Gene weight within the gene co-expression network 
 

Pathways Genes GSCNA weight Rank 

Reactome Immune system signaling IGLV5-37 1.005 149 of 344 
C8B 0.917 224 of 344 

KEGG TGF beta signaling pathway INHBC 0.885 55 of 82 
AMHR2 1.059 27 of 82  

 
Gene co-expression network 
The gene co-expression network was built using gene set information from the Reactome and KEGG 
databases (Kanehisa & Goto, 2000; Kanehisa, 2019; Kanehisa et al., 2022; Gillespie et al., 2021; Jassal et al., 
2019). The Reactome immune system signaling pathway co-expression network is constructed from 344 
genes, while the KEGG TGF beta signaling pathway has 85 genes, as illustrated in Supplementary Figure 2. 
The analysis demonstrates that the co-expression pattern of the KEGG TGF beta signaling pathway in lung 
cytokine storm trigger samples is not significantly different from co-expressed compared to the non-trigger 
samples. A similar result was obtained for the Reactome immune system signaling pathway co-expression 
network. Besides, the analysis provides a net gene correlation value term as a weight for each gene in the 
network, with AMHR2 having the highest weight and the lowest rank compared to INHBC, C8B, and IGLV5-
37, as described in Table 1. Since the TNFSF11 is not part of any of those pathways then it was not 
included in Table 1. 
 
Cell fraction analysis 
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Figure 3. Lung immune cell fraction means comparison: A. Macrophages M0, B. Macrophages M1, C. 
Macrophages M2, D. Activated dendritic cell, E. naive CD 4 T cell, F. T cell gamma delta. 
 
The analysis attempts to observe the relative immune cells of lung cytokine storm trigger samples, lung 
cytokine storm non-trigger samples, and lung negative samples. Under the P value 0.05 cutoff, lung 
cytokine storm trigger samples had a significantly smaller proportion of macrophage M0 and M2 than 
negative samples. In contrast, their macrophage M1, T cell gamma delta, and naive CD 4 T cell fractions 
were significantly higher compared to the negative group. Furthermore, the lung cytokine storm trigger 
group has a significantly lower activated dendritic cell fraction and higher T cell gamma delta than the 
cytokine storm non-trigger group. The comparison is illustrated in Figure 3. 
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Discussion 
 
Prior to analysis, the low-count and zero-count data were excluded since the genes may not achieve a 
biologically meaningful level (Bourgon et al., 2010). Both typical gene expression data with values less than 
10 are technically noise and filtering them will improve the statistical power of the analysis (Law et al., 
2018; Lun et al. 2016). The batch correction was necessary since the data came from different technical 
processing batches and were prone to data variance caused by the experimental batch rather than by the 
biological condition (Zhang et al., 2020). 
 
The cytokine storm in COVID-19 disturbs lung and blood hemostasis (Fajgenbaum & June, 2020; Shen et al., 
2021). Hence, the primary criterion for examining the potential therapeutic target for cytokine storm in 
COVID-19 patients is that the genes must exhibit increased expression in both the lungs and blood. Besides, 
the upregulated genes can potentially be drug target candidates, as it is relatively more convenient to 
inhibit the target activity than to activate it (Sloris et al., 2018). Moreover, as the cytokine storm arises from 
the deregulation of the immune system (Fajgenbaum & June, 2020; Shen et al., 2021), the specific target 
should also be linked to pathways relevant to the immune system. 
 
In comparison with other coronavirus infections and influenza, SARS-CoV infection initiates the release of 
chemokines such as CCL2, CCL3, CCL5, and CXCL10. The chemokine will recruit the immune cells to the 
infection site. The recruited cells, including dendritic cells and macrophages, produce an excessive number 

of cytokines like TNF-α, IL-6, and interferons which can lead to cytokine storms. Meanwhile, MERS-CoV 

infection induces cytokines production, including IL-6, IL-1β, IL-8, and IFN-γ, but with a slower response 
compared to SARS-CoV (Liu et al., 2021). Unlike both coronaviruses, severe influenza infections are often 

associated with high levels of both pro-inflammatory cytokines, including IFN-γ and IL-6, and anti-
inflammatory mediators like IL-10 and TGF beta (Pacheco-Hernández et al., 2022). The increasing production 
of both pro-inflammatory and anti-inflammatory cytokines is also observed in cytokine storms caused by 
SARS-CoV-2 infection, which leads to a complex immune profile (Liu et al., 2021).  
 
Based on the findings, AMHR2 could be a prospective target as its expression changes are relatively high 
among the other prospected intersection genes related to immune system activity. A study by Matteucci 
et al.’s (2020) utilized the CD8+ T from peripheral blood cells of patients with COVID-19 cells treated with 

Tα1 and LPS to observe how Tα1 might modulate or counterbalance the strong inflammatory response 
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induced by LPS. The study demonstrates that AMHR2 was consistently expressed and regulated, suggesting 
a possible regulatory role of AMHR2 in cytokine signaling and immune response pathways. The increasing 
activity of AMHR2 may trigger the increasing activity of associated pathways, such as the KEGG TGF beta 
signaling pathway (Kanehisa & Goto, 2000; Kanehisa, 2019; Kanehisa et al., 2022; Gillespie et al., 2021; Jassal 
et al., 2019). As demonstrated in differential pathway expression analysis, the KEGG TGF beta signaling 
pathway was positively enriched, indicating that the overactivity of AMHR2 might potentially enhance KEGG 
TGF beta signaling pathway activity. The findings are consistent with a study conducted by Shen et al.’s 
(2021), which argues that the cytokine storm observed in COVID-19 is a consequence of the imbalanced 
cytokine activity induced by the heightened TGF beta activity. Increased TGF beta activity inhibits the 
process of lymphocyte differentiation and proliferation, resulting in a decrease in the number of 
lymphocytes in circulation. Consequently, it will delay the adaptive immune response and induce cytokine 
storms in patients with Covid 19 (Gillespie et al., 2021; Shen et al., 2021). In addition, the activity of AMHR2 
might have an essential role within the gene network as its net correlation value is relatively high compared 
to the four other intersection genes. 
 
The immune cell fraction was analyzed to gather additional data regarding the potential impact of the 
highly active AMHR2 and KEGG TGF beta signaling pathway, which might potentially initiate the cytokine 
storm. The upregulation of AMHR2 has been reported to cause the M1/M2 disequilibrium through the 
activity of the TGF-signaling pathway. The M1 macrophage is an activated macrophage with pro-
inflammatory properties that is responsible for eliminating pathogens and infected cells. On the other hand, 
the M2 macrophage plays a role in promoting tissue healing and cell proliferation. These distinctions have 
been supported by studies (Orecchioni et al., 2019; Italiani & Boraschi, 2014, Beck et al., 2016). The 
polarization of M1 macrophages correlates positively with lung injury and TGF beta activity (Wang et al., 
2021). As AMHR2 was highly upregulated in lung and blood samples, its expression may disturb the 
equilibrium of the TGF beta signaling pathway, resulting in the M1 macrophage fraction being higher than 
the M2 macrophage fractions in lung trigger samples. As a result, the excessive production of AMHR2 can 
stimulate the function of TGF beta signaling, leading to the differentiation of M0 macrophages into M1 and 
subsequently triggering inflammation in the lung.  
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Figure 4. Cytokine storm potential development. The upregulation of AMHR2, a member of the TGF beta 
signaling pathway, may induce the TGF beta signaling pathway. It may induce the upregulation of the TGF 
beta signaling pathway and might trigger M1 macrophages, and T cell gamma delta proliferation. Following 
this, an excessive amount of proinflammatory cytokine will be released. 
 

Further evidence of TGF beta signaling activity causing a cytokine storm can be seen in the elevated 
proportion of T gamma delta cells in samples that generate a lung cytokine storm. T gamma delta cells are 
a type of T cell that has a T-cell receptor (TCR) with gamma and delta chains. It is present in various tissues, 
including the lungs, for maintaining tissue homeostasis by producing cytokines to overcome viral infection, 
and its activity is enhanced by the TGF beta activity (Cheng & Hu, 2017; Peters et al., 2018). Therefore, the 
study of differential gene and pathway expression showed that increased AMHR2 expression and enhanced 
TGF beta pathway activity may lead to the production of excessive cytokines by T gamma delta cells. The 
potential cytokine storm development is illustrated in Figure 4. Overall, the examination of immune cell 
infiltration shows that the increased expression of AMHR2 may trigger the upregulation of the TGF beta 
signaling pathway, which in turn activates pro-inflammatory macrophages and enhances the release of 
cytokines by T gamma delta cells.  
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Suggestion 
In summary, the analysis demonstrates that 290 genes are upregulated in the lungs and blood of 

COVID-19 patients with cytokine storm. Among these genes, there are five that are linked to pathways 
relevant to the immune system: TNFSF11, IGLV5-35, C8B, INHBC, and AMHR2. AMHR2 exhibits the highest 
fold change compared to the other genes, suggesting that AMHR2 is more active. The increased expression 
of AMHR2 may result in excessive activation of the KEGG TGF beta signaling pathway, leading to the 
augmentation of pro-inflammatory macrophages and T gamma delta cells' production of cytokines. This 
systemic action can lead to the occurrence of a cytokine storm. Thus, AMRH2 can serve as a promising 
target for alleviating cytokine storms in Covid 19 patients through the inhibition of the KEGG TGF beta 
signaling pathway. However, additional research is required to confirm the effectiveness of AMHR2 as a 
therapeutic target for suppressing cytokine storm activity in patients with COVID-19. 
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